skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Yuning"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The identification of catalytic RNAs is typically achieved through primarily experimental means. However, only a small fraction of sequence space can be analyzed even with high-throughput techniques. Methods to extrapolate from a limited data set to predict additional ribozyme sequences, particularly in a human-interpretable fashion, could be useful both for designing new functional RNAs and for generating greater understanding about a ribozyme fitness landscape. Using information theory, we express the effects of epistasis (i.e., deviations from additivity) on a ribozyme. This representation was incorporated into a simple model of the epistatic fitness landscape, which identified potentially exploitable combinations of mutations. We used this model to theoretically predict mutants of high activity for a self-aminoacylating ribozyme, identifying potentially active triple and quadruple mutants beyond the experimental data set of single and double mutants. The predictions were validated experimentally, with nine out of nine sequences being accurately predicted to have high activity. This set of sequences included mutants that form a previously unknown evolutionary ‘bridge’ between two ribozyme families that share a common motif. Individual steps in the method could be examined, understood, and guided by a human, combining interpretability and performance in a simple model to predict ribozyme sequences by extrapolation. 
    more » « less
  2. Abstract High-throughput experimentation (HTE) is an increasingly important tool in reaction discovery. While the hardware for running HTE in the chemical laboratory has evolved significantly in recent years, there remains a need for software solutions to navigate data-rich experiments. Here we have developed phactor™, a software that facilitates the performance and analysis of HTE in a chemical laboratory. phactor™ allows experimentalists to rapidly design arrays of chemical reactions or direct-to-biology experiments in 24, 96, 384, or 1,536 wellplates. Users can access online reagent data, such as a chemical inventory, to virtually populate wells with experiments and produce instructions to perform the reaction array manually, or with the assistance of a liquid handling robot. After completion of the reaction array, analytical results can be uploaded for facile evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are stored in machine-readable formats that are readily translatable to various software. We also demonstrate the use of phactor™ in the discovery of several chemistries, including the identification of a low micromolar inhibitor of the SARS-CoV-2 main protease. Furthermore, phactor™ has been made available for free academic use in 24- and 96-well formats via an online interface. 
    more » « less
  3. null (Ed.)